Transcription of Drosophila troponin I gene is regulated by two conserved, functionally identical, synergistic elements.

نویسندگان

  • María-Cruz Marín
  • José-Rodrigo Rodríguez
  • Alberto Ferrús
چکیده

The Drosophila wings-up A gene encodes Troponin I. Two regions, located upstream of the transcription initiation site (upstream regulatory element) and in the first intron (intron regulatory element), regulate gene expression in specific developmental and muscle type domains. Based on LacZ reporter expression in transgenic lines, upstream regulatory element and intron regulatory element yield identical expression patterns. Both elements are required for full expression levels in vivo as indicated by quantitative reverse transcription-polymerase chain reaction assays. Three myocyte enhancer factor-2 binding sites have been functionally characterized in each regulatory element. Using exon specific probes, we show that transvection is based on transcriptional changes in the homologous chromosome and that Zeste and Suppressor of Zeste 3 gene products act as repressors for wings-up A. Critical regions for transvection and for Zeste effects are defined near the transcription initiation site. After in silico analysis in insects (Anopheles and Drosophila pseudoobscura) and vertebrates (Ratus and Coturnix), the regulatory organization of Drosophila seems to be conserved. Troponin I (TnI) is expressed before muscle progenitors begin to fuse, and sarcomere morphogenesis is affected by TnI depletion as Z discs fail to form, revealing a novel developmental role for the protein or its transcripts. Also, abnormal stoichiometry among TnI isoforms, rather than their absolute levels, seems to cause the functional muscle defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two functionally identical modular enhancers in Drosophila troponin T gene establish the correct protein levels in different muscle types.

The control of muscle-specific expression is one of the principal mechanisms by which diversity is generated among muscle types. In an attempt to elucidate the regulatory mechanisms that control fiber diversity in any given muscle, we have focused our attention on the transcriptional regulation of the Drosophila Troponin T gene. Two, nonredundant, functionally identical, enhancer-like elements ...

متن کامل

Rab11 is required for maintenance of cell shape via βPS integrin mediated cell adhesion in Drosophila

In eukaryotes, vesicle trafficking is regulated by the small monomeric GTPases of the Rab protein family. Rab11, (a subfamily of the Ypt/Rab gene family) an evolutionarily conserved, ubiquitously expressed subfamily of small monomeric Rab GTPases, has been implicated in regulating vesicular trafficking through the recycling of endosomal compartment. In an earlier communication, we have shown th...

متن کامل

Fine-structure mutational analysis of a stage- and tissue-specific promoter element of the Drosophila glue gene Sgs-3.

The Sgs-3 gene of Drosophila melanogaster exhibits a tightly regulated pattern of expression governed by two functionally equivalent elements within 1 kb of the gene, each of which is sufficient to confer third-instar salivary gland-specific transcription. In this report we describe a detailed functional analysis of one of these, the proximal element. To determine the nucleotides responsible fo...

متن کامل

Molecular Study of Vascular Endothelial Growth Factor Gene in Iranian Patients after Myocardial Infarction

Background: Stimulation of collateral artery growth (arteriogenesis) and/or capillary network growth (angiogenesis) would be beneficial to the patients with myocardial infarction. To understand the central role of vascular endothelial growth factor (VEGF) in biological angiogenesis, we performed molecular analysis of the VEGF gene in patients afflicted with acute myocardial infarction (AMI). Me...

متن کامل

Mef2c is an essential regulatory element required for unique expression of the cardiac-specific CARK gene

The cardiac ankyrin repeat kinase (CARK) gene, also named TNNI3K for its interaction with cardiac troponin I, is both a unique expression and heart-enriched gene. To understand the mechanisms of CARK gene expression and regulation, we first cloned the full-length mRNA sequence and mapped the transcription start site of the mouse CARK gene and characterized its promoter regions. Two transcriptio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology of the cell

دوره 15 3  شماره 

صفحات  -

تاریخ انتشار 2004